Эвристическое сопоставление
Кленси отметил, что одна из важнейших особенностей классификации состоит в том, что эксперт выбирает категорию из ряда возможных решений, которые можно заранее перечислить. Когда мы имеем дело с простыми вещами или явлениями, то для их классификации вполне достаточно бросающихся в глаза свойств объектов. Это позволяет почти мгновенно сопоставлять данные и категории. В более сложных случаях таких лежащих на поверхности свойств может оказаться недостаточно для того, чтобы правильно определить место объекта в иерархической схеме классификации. В этом случае нам остается уповать на тот метод, который Кленси назвал эвристической классификацией. Суть его состоит в установлении неиерархических ассоциативных связей между данными и категориями классификации, которое требует выполнения промежуточных логических заключений, включающих, возможно, и концепции из другой таксономии.
На рис. 11.3 показаны три основных этапа выполнения эвристической классификации: абстрагирование от данных, сопоставление абстрактных категорий данных с абстрактными категориями решений (утолщенная стрелка) и конкретизация решения. Рассмотрим их по очереди.
Рис. 11.3.
Структура логических связей при эвристической классификации ([Clancey, 1985])
Эвристическое сопоставление. Выполнить сопоставление первичных данных в конкретном случае и окончательного диагноза довольно трудно. Гораздо легче сопоставить более абстрактные данные и достаточно широкий класс заболеваний. Например, повышенная температура может служить индикатором лихорадки, наводящей на мысль о инфекционном заражении. Данные "включают" гипотезы, но на относительно высоком уровне абстракции. Такой процесс сопоставления имеет ярко выраженный эвристический характер, поскольку соответствие между данными и гипотезами на любом уровне не бывает однозначным и из общего правила может быть множество исключений. Анализ данных, которые "вписываются" в определенную абстрактную категорию, просто позволяет отбирать решения, лучше согласующиеся с абстрактами решений.
- Конкретизация решений.
После того как определена абстрактная категория, которая сужает пространство
решений, нужно определить в этом пространстве конкретные решения-кандидаты
и каким-то образом их ранжировать. Это может потребовать дальнейших размышлений,
в которые включаются уже количественные параметры данных, или даже сбора дополнительной
информации. В любом случае целью этой процедуры является отбор "соревнующихся"
гипотез в пространстве решений и последующее их ранжирование — сортировка
по степени правдоподобия.
- Определительный.
В этом варианте в первую очередь рассматриваются характерные признаки
класса объектов, и он во многом напоминает таксономический подход в ботанике
и зоологии.
- Количественный.
В этом варианте абстрагирование выполняется исходя из количественных характеристик,
как это было сделано в упоминавшемся выше примере с температурой пациента.
- Обобщение. Этот
вариант основывается на иерархии характерных свойств. Например, пациенты,
обладающие подавленной иммунной активностью, в более общем смысле могут рассматриваться
как потенциальные носители инфекции.
Исходными являются данные анализа крови пациента (количество лейкоцитов). Сначала выполняется количественное абстрагирование от конкретного значения этого показателя, который оценивается как низкий, что, в свою очередь, является характерным признаком лейкопении (здесь мы имеем дело с определительным вариантом абстрагирования). Обобщение лейкопении — подавленная иммунная активность, а обобщение последней— повышенная склонность к переносу инфекции (т.е. такие пациенты более подвержены воздействию различных микроорганизмов). Повышенная склонность к переносу инфекции является уже родовой категорией и наводит на мысль о наличии инфекции, вызванной грамотрицательными микроорганизмами (т.е. инфекции, связанной с определенным классом бактерий). Затем это родовое решение конкретизируется и предполагается, что источником инфекции являются бактерии E.Coli.
В системе MYCIN сопоставление данных и абстрактных категорий решений выполняется с помощью порождающих правил, а эвристическая природа такого сопоставления выражается коэффициентами уверенности. Эти коэффициенты можно рассматривать как заложенную в порождающее правило меру "строгости" соответствия между предпосылкой и выводом. Другие правила затем будут уточнять выполненное сопоставление и таким образом "подстраивать" коэффициент уверенности.
Назад Содержание Вперед